Search results
Results from the WOW.Com Content Network
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
The pruning that is associated with learning is known as small-scale axon terminal arbor pruning. Axons extend short axon terminal arbors toward neurons within a target area. Certain terminal arbors are pruned by competition. The selection of the pruned terminal arbors follow the "use it or lose it" principle seen in synaptic plasticity. This ...
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [1] Hence, it is the biological basis for learning and the formation of new memories.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
Despite the common use of Hebbian models for long-term potentiation, Hebb's principle does not cover all forms of synaptic long-term plasticity. Hebb did not postulate any rules for inhibitory synapses, nor did he make predictions for anti-causal spike sequences (presynaptic neuron fires after the postsynaptic neuron).
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
The book is a collection of stories of doctors and patients showing that the human brain is capable of undergoing change, including stories of recovering use of paralyzed body parts, deaf people learning to hear, and others getting relief from pain using exercises to retrain neural pathways.
The basic BCM rule takes the form = (()) (),where: is the synaptic weight of the th synapse,; is th synapse's input current, = () = () is the inner product of weights and input currents (weighted sum of inputs),