Search results
Results from the WOW.Com Content Network
In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b.That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x.
Napier's "logarithm" is related to the natural logarithm by the relation ()and to the common logarithm by ().Note that and (). Napierian logarithms are essentially natural logarithms with decimal points shifted 7 places rightward and with sign reversed.
Graph of log 2 x as a function of a positive real number x. In mathematics, the binary logarithm (log 2 n) is the power to which the number 2 must be raised to obtain the value n.
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1]
The iterated logarithm is closely related to the generalized logarithm function used in symmetric level-index arithmetic.The additive persistence of a number, the number of times someone must replace the number by the sum of its digits before reaching its digital root, is ().
The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.