Search results
Results from the WOW.Com Content Network
The first stellation, often called the stellated rhombic dodecahedron, can be seen as a rhombic dodecahedron with each face augmented by attaching a rhombic-based pyramid to it, with a pyramid height such that the sides lie in the face planes of the neighbouring faces. Luke describes four more stellations: the second and third stellations ...
In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 ...
Rhombic triacontahedron: Compound of great icosahedron and great stellated dodecahedron: Icosidodecahedron: Compound of great icosahedron and great stellated dodecahedron: Great icosidodecahedron: Compound of dodecahedron and icosahedron: Icosidodecahedron: Compound of cube and octahedron: Cuboctahedron: Second stellation of the cuboctahedron ...
Excavated dodecahedron (Third stellation of icosahedron) I h: 29 Fourth stellation of icosahedron: I h: 30 Fifth stellation of icosahedron: I h: 31 Sixth stellation of icosahedron: I h: 32 Seventh stellation of icosahedron: I h: 33 Eighth stellation of icosahedron: I h: 34 Ninth stellation of icosahedron Great triambic icosahedron: I h: 35 ...
In terms of group theory, if G is the symmetry group of a polyhedral compound, and the group acts transitively on the polyhedra (so that each polyhedron can be sent to any of the others, as in uniform compounds), then if H is the stabilizer of a single chosen polyhedron, the polyhedra can be identified with the orbit space G/H – the coset gH ...
Model of the compound in a dodecahedron. The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876. It is one of five regular compounds, and dual to the compound of five octahedra. It can be seen as a faceting of a regular dodecahedron. It is one of the stellations of the rhombic ...
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
Icosahedral symmetry is equivalently the projective special linear group PSL(2,5), and is the symmetry group of the modular curve X(5), and more generally PSL(2,p) is the symmetry group of the modular curve X(p). The modular curve X(5) is geometrically a dodecahedron with a cusp at the center of each polygonal face, which demonstrates the ...