enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    [1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

  3. Formal charge - Wikipedia

    en.wikipedia.org/wiki/Formal_charge

    Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.

  4. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    The bonding in carbon dioxide (CO 2): all atoms are surrounded by 8 electrons, fulfilling the octet rule.. The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.

  5. Carbon dioxide - Wikipedia

    en.wikipedia.org/wiki/Carbon_dioxide

    The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]

  6. Carbon–oxygen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–oxygen_bond

    The C–O bond is polarized towards oxygen (electronegativity of C vs O, 2.55 vs 3.44). Bond lengths [4] for paraffinic C–O bonds are in the range of 143 pm – less than those of C–N or CC bonds. Shortened single bonds are found with carboxylic acids (136 pm) due to partial double bond character and elongated bonds are found in epoxides ...

  7. Carbon dioxide (data page) - Wikipedia

    en.wikipedia.org/wiki/Carbon_dioxide_(data_page)

    Structure and properties Index of refraction, n D: 1.000449 at 589.3 nm and 0 °C [1] Dielectric constant, ε r: 1.60 ε 0 at 0 °C, 50 atm Average energy per C=O bond 804.4 kJ/mol at 298 K (25 °C) [2] Bond length: C=O 116.21 pm (1.1621 Å) [3] Bond angle: O–C–O: 180° , [3] decreasing to as low as 163° at higher temperature and/or ...

  8. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–carbon_bond

    Formula C 2 H 6: C 2 H 4: C 2 H 2: Class alkane: alkene: alkyne: Structure Hybridisation of carbon sp 3: sp 2: sp C-C bond length 153.5 pm: 133.9 pm: 120.3 pm: Proportion of C-C single bond 100% 87% 78% Structure determination method microwave spectroscopy: microwave spectroscopy infrared spectroscopy

  9. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    This angle may be calculated from the dot product of the two vectors, defined as a ⋅ b = ‖ a ‖ ‖ b ‖ cos θ where ‖ a ‖ denotes the length of vector a. As shown in the diagram, the dot product here is –1 and the length of each vector is √ 3 , so that cos θ = – ⁠ 1 / 3 ⁠ and the tetrahedral bond angle θ = arccos ...