Search results
Results from the WOW.Com Content Network
The Tomlin order permits either party to apply to court to enforce the terms of the order, which avoids the need to start fresh proceedings. The terms of the schedule do not form part of the court order and so may remain confidential, and they may include matters outside the jurisdiction of the court or the scope of the case in hand.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real algebraic numbers. As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.
List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields. An L σ ...
Each set of predicates (words like hit, broke, cry, happy are first order-predicates; Cause is a second-order predicate) and arguments (often consisting of an agent/subject (e.g. John in ‘P’), a recipient/object (e.g. Chris in ‘P’) and an instrument (e.g. the unicycle in ‘P’)) are in turn manipulated as propositions: event/statement ...
The smallest number bigger than every finite number with the following property: there is a formula () in the language of first-order set-theory (as presented in the definition of ) with less than a googol symbols and as its only free variable such that: (a) there is a variable assignment assigning to such that ([()],), and (b) for any variable ...
There are also some differences in how number sense is defined in math cognition. For example, Gersten and Chard say number sense "refers to a child's fluidity and flexibility with numbers, the sense of what numbers mean and an ability to perform mental mathematics and to look at the world and make comparisons." [2] [3] [4]
The Löwenheim–Skolem theorem implies that infinite structures cannot be categorically axiomatized in first-order logic. For example, there is no first-order theory whose only model is the real line: any first-order theory with an infinite model also has a model of cardinality larger than the continuum.