Search results
Results from the WOW.Com Content Network
For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules. [7]
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Lactose, maltose, and sucrose are all compound sugars, disaccharides, with the general formula C 12 H 22 O 11. They are formed by the combination of two monosaccharide molecules with the exclusion of a molecule of water. [72] Lactose is the naturally occurring sugar found in milk. A molecule of lactose is formed by the combination of a molecule ...
Monosaccharides are the building blocks of disaccharides (such as sucrose, lactose and maltose) and polysaccharides (such as cellulose and starch). The table sugar used in everyday vernacular is itself a disaccharide sucrose comprising one molecule of each of the two monosaccharides D-glucose and D-fructose. [2]
Disaccharides consist of compound sugars containing two monosaccharides with the elimination of a water molecule with the general chemical structure C12H22O11. Oligosaccharides are carbohydrates that consist of a polymer that contains three to ten monosaccharides linked together by glycosidic bonds.
Lactose, or milk sugar, is a disaccharide composed of galactose and glucose and has the molecular formula C 12 H 22 O 11.Lactose makes up around 2–8% of milk (by mass). The name comes from lact (gen. lactis), the Latin word for milk, plus the suffix -ose used to name sugars.
Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt. [4] Unlike sucrose, it is a reducing sugar. [5]
The table shows all aldoses with 3 to 6 carbon atoms, and a few ketoses. For chiral molecules, only the ' D-' form (with the next-to-last hydroxyl on the right side) is shown; the corresponding forms have mirror-image structures. Some of these monosaccharides are only synthetically prepared in the laboratory and not found in nature.