enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  3. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    In the stochastic setting (such as in the mini-batch setting in deep learning), standard GD is called stochastic gradient descent, or SGD. Even if the cost function has globally continuous gradient, good estimate of the Lipschitz constant for the cost functions in deep learning may not be feasible or desirable, given the very high dimensions of ...

  4. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Mini-batch techniques are used with repeated passing over the training data to obtain optimized out-of-core versions of machine learning algorithms, for example, stochastic gradient descent. When combined with backpropagation, this is currently the de facto training method for training artificial neural networks.

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A test data set is a data set that is independent of the training data set, but that follows the same probability distribution as the training data set. If a model fit to the training data set also fits the test data set well, minimal overfitting has taken place (see figure below). A better fitting of the training data set as opposed to the ...

  6. Regression testing - Wikipedia

    en.wikipedia.org/wiki/Regression_testing

    Regression testing is performed when changes are made to the existing functionality of the software or if there is a bug fix in the software. Regression testing can be achieved through multiple approaches; if a test all approach is followed, it provides certainty that the changes made to the software have not affected the existing functionalities, which are unaltered.

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  8. Model-based testing - Wikipedia

    en.wikipedia.org/wiki/Model-based_testing

    Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The picture on the right depicts the former ...

  9. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    The algorithm starts with an initial estimate of the optimal value, , and proceeds iteratively to refine that estimate with a sequence of better estimates ,, ….The derivatives of the function := are used as a key driver of the algorithm to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of ().