Search results
Results from the WOW.Com Content Network
In this model, the electron cloud of an atom may be seen as being built up (in approximation) ... With J. J. Thomson's discovery of the electron in 1897, ...
The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital , a mathematical function that characterises the probability that an electron appears to be at a particular location ...
The electron (e −, or β − in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. [13] Electrons belong to the first generation of the lepton particle family, [14] and are generally thought to be elementary particles because they have no known components or substructure. [1]
Plaque commemorating J. J. Thomson's discovery of the electron outside the old Cavendish Laboratory in Cambridge Autochrome portrait by Georges Chevalier, 1923 Thomson c. 1920–1925 Thomson was elected a Fellow of the Royal Society (FRS) [ 24 ] [ 49 ] and appointed to the Cavendish Professorship of Experimental Physics at the Cavendish ...
Chadwick called this new particle "the neutron" and believed that it to be a proton and electron fused together because the neutron had about the same mass as a proton and an electron's mass is negligible by comparison. [83] Neutrons are not in fact a fusion of a proton and an electron.
In modern quantum mechanics, the electron in hydrogen is a spherical cloud of probability that grows denser near the nucleus. The rate-constant of probability-decay in hydrogen is equal to the inverse of the Bohr radius, but since Bohr worked with circular orbits, not zero area ellipses, the fact that these two numbers exactly agree is ...
The discrepancies were eventually explained with the discovery of isotopes in 1912. A few months after Thomson's paper appeared, George FitzGerald suggested that the corpuscle identified by Thomson from cathode rays and proposed as parts of an atom was a "free electron", as described by physicist Joseph Larmor and Hendrik Lorentz. While Thomson ...
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.