Search results
Results from the WOW.Com Content Network
But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.
The following is an incomplete list of some arbitrary-precision arithmetic libraries for C++. GMP [1] [nb 1] MPFR [3] MPIR [4] TTMath [5] Arbitrary Precision Math C++ Package [6] Class Library for Numbers; Number Theory Library; Apfloat [7] C++ Big Integer Library [8] MAPM [9] ARPREC [10] InfInt [11] Universal Numbers [12] mp++ [13] num7 [14]
The ternary operator can also be viewed as a binary map operation. In R—and other languages with literal expression tuples—one can simulate the ternary operator with something like the R expression c (expr1, expr2)[1 + condition] (this idiom is slightly more natural in languages with 0-origin subscripts).
Variables of BigNumber type can be used, or regular numbers can be converted to big numbers using conversion operator # (e.g., #2.3^2000.1). SmartXML big numbers can have up to 100,000,000 decimal digits and up to 100,000,000 whole digits.
This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.
the use of 2 to check whether a number is even or odd, as in isEven = (x % 2 == 0), where % is the modulo operator the use of simple arithmetic constants, e.g., in expressions such as circumference = 2 * Math.PI * radius , [ 1 ] or for calculating the discriminant of a quadratic equation as d = b^2 − 4*a*c
the conditional operator can yield a L-value in C/C++ which can be assigned another value, but the vast majority of programmers consider this extremely poor style, if only because of the technique's obscurity.
C-like languages feature two versions (pre- and post-) of each operator with slightly different semantics. In languages syntactically derived from B (including C and its various derivatives), the increment operator is written as ++ and the decrement operator is written as --. Several other languages use inc(x) and dec(x) functions.