Search results
Results from the WOW.Com Content Network
An issue tree, also called logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right. [1]: 47 Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also ...
An early literature review of problem structuring proposed grouping the texts reviewed into "four streams of thought" that describe some major differences between methods: [21] the checklist stream, which is step-by-step technical problem solving (not problem structuring as it came to be defined in PSMs, so this stream does not apply to PSMs),
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
(In general, the change-making problem requires dynamic programming to find an optimal solution; however, most currency systems are special cases where the greedy strategy does find an optimal solution.) A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1]
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
The root node of such a tree represents the problem of one of the players winning the game, starting from the initial state of the game. Given a node N, labelled by the problem P of the player winning the game from a particular state of play, there exists a single set of conjoint children nodes, corresponding to all of the opponents responding ...
An upper bound for a decision-tree model was given by Meyer auf der Heide [17] who showed that for every n there exists an O(n 4)-deep linear decision tree that solves the subset-sum problem with n items. Note that this does not imply any upper bound for an algorithm that should solve the problem for any given n.
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.