Search results
Results from the WOW.Com Content Network
To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric .
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The fundamental prevalence-independent statistics are sensitivity and specificity.. Sensitivity or True Positive Rate (TPR), also known as recall, is the proportion of people that tested positive and are positive (True Positive, TP) of all the people that actually are positive (Condition Positive, CP = TP + FN).
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
Even though the accuracy is 10 + 999000 / 1000000 ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of 10 / 10 + 990 = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = 2 × 0.01 × 1 / 0.01 + 1 ≈ 2% (the recall being 10 + 0 / 10 ...
Equalized odds, [1] also referred to as conditional procedure accuracy equality and disparate mistreatment, is a measure of fairness in machine learning. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal true positive rate and equal false positive rate, [ 2 ] satisfying the formula:
The accuracy ratio (AR) is defined as the ratio of the area between the model CAP and random CAP, and the area between the perfect CAP and random CAP. [2] In a successful model, the AR has values between zero and one, and the higher the value is, the stronger the model. The cumulative number of positive outcomes indicates a model's strength.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us