enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]

  4. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    The probability measure thus defined is known as the Binomial distribution. As we can see from the above formula that, if n=1, the Binomial distribution will turn into a Bernoulli distribution. So we can know that the Bernoulli distribution is exactly a special case of Binomial distribution when n equals to 1.

  5. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  6. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).

  7. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    (That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]

  8. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Probability function or probability measure: describes the probability () that the event , occurs. [ 11 ] Cumulative distribution function : function evaluating the probability that X {\displaystyle X} will take a value less than or equal to x {\displaystyle x} for a random variable (only for real-valued random variables).

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    Given two events A and B from the sigma-field of a probability space, with the unconditional probability of B being greater than zero (i.e., P(B) > 0), the conditional probability of A given B (()) is the probability of A occurring if B has or is assumed to have happened. [5]