Search results
Results from the WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...
However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field v = ( x y , y z , z x ) {\displaystyle {\bf {v}}=(xy,yz,zx)} satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a ...
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
In the mathematical study of partial differential equations, the Bateman transform is a method for solving the Laplace equation in four dimensions and wave equation in three by using a line integral of a holomorphic function in three complex variables. It is named after the mathematician Harry Bateman, who first published the result in (Bateman ...
Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.
Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.