Search results
Results from the WOW.Com Content Network
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. [1] [2]
A plume ejected from a SrRuO 3 target during pulsed laser deposition. One possible configuration of a PLD deposition chamber. Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited.
Ion plating (IP) is a physical vapor deposition (PVD) process that is sometimes called ion assisted deposition (IAD) or ion vapor deposition (IVD) and is a modified version of vacuum deposition. Ion plating uses concurrent or periodic bombardment of the substrate, and deposits film by atomic-sized energetic particles called ions .
Aluminising vacuum chamber at Mont Mégantic Observatory used for re-coating telescope mirrors. [1] Vacuum deposition is a group of processes used to deposit layers of material atom-by-atom or molecule-by-molecule on a solid surface. These processes operate at pressures well below atmospheric pressure (i.e., vacuum). The deposited layers can ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm / min at relatively low substrate temperatures, with very high material utilization efficiency.
The main advantages of HIPIMS coatings include a denser coating morphology [23] and an increased ratio of hardness to Young's modulus compared to conventional PVD coatings. Whereas comparable conventional nano-structured (Ti,Al)N coatings have a hardness of 25 GPa and a Young's modulus of 460 GPa, the hardness of the new HIPIMS coating is ...