Search results
Results from the WOW.Com Content Network
An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junction .
This has shown that proteins in stereocilia move quickly, indicating that the movement of the proteins within the hair cells may be a very important factor to maintaining the integrity of the hair bundles in the inner ear. Further research found myosin and actin, two proteins that are important for cell movement, move very quickly.
The Outer ear consists of the pinna or auricle (visible parts including ear lobes and concha), and the auditory meatus (the passageway for sound). The fundamental function of this part of the ear is to gather sound energy and deliver it to the eardrum. Resonances of the external ear selectively boost sound pressure with frequency in the range 2 ...
Chemical and electrical synapses are two ways of synaptic transmission. In a chemical synapse, electrical activity in the presynaptic neuron is converted (via the activation of voltage-gated calcium channels) into the release of a chemical called a neurotransmitter that binds to receptors located in the plasma membrane of the postsynaptic cell ...
This synapse has been described as the largest in the brain. [10] The related endbulb of Held is also a large axon terminal synapse (15–30 μm in diameter) found in another auditory brainstem structure, namely the anteroventral cochlear nucleus (AVCN). [11] As with the calyces, these synapses promote fast, efficient information transfer.
Hensen's cells are critical in many functions; they act as mediators of ion metabolism, the K+ spatial buffering pathway, and neuron innervation; and the purinergic receptors found in the Hensen's cells are important in providing a suitable electrical and micro-mechanical environment to support hair cells and to maintain homeostasis of the ...
In 2020, doctors found a Japanese beetle inside the ear of a 14-year-old girl in Pennsylvania. She had been swimming in a pool, then detected a crawling sensation in her right ear.
In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.