enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  3. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  5. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Illustration of row- and column-major order. Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" , in which all the elements for a given column are stored contiguously in memory.

  6. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of . Note: For a full-rank square matrix (i.e. when n = m = r {\textstyle n=m=r} ), this procedure will yield the trivial result C = A {\textstyle C=A} and F ...

  7. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    Normally, a matrix represents a linear map, and the product of a matrix and a column vector represents the function application of the corresponding linear map to the vector whose coordinates form the column vector. The change-of-basis formula is a specific case of this general principle, although this is not immediately clear from its ...

  8. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  9. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    The last row of is the vector shifted by one in reverse. Different sources define the circulant matrix in different ways, for example as above, or with the vector c {\displaystyle c} corresponding to the first row rather than the first column of the matrix; and possibly with a different direction of shift (which is sometimes called an anti ...

  1. Related searches how to make a row into column vector matlab project with python for beginners

    row and column vector examplerow vector examples
    row and column vector formula