Search results
Results from the WOW.Com Content Network
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.
For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is Lipschitz-continuous .
Even Euler does not seem to have written it down explicitly—and certainly it doesn't appear in any of his publications—though he must surely have realized that it follows immediately from his identity [i.e. Euler's formula], e ix = cos x + i sin x. Moreover, it seems to be unknown who first stated the result explicitly
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...
The method also is applicable to other multiple integrals. [1] [2] Sometimes, even though a full evaluation is difficult, or perhaps requires a numerical integration, a double integral can be reduced to a single integration, as illustrated next. Reduction to a single integration makes a numerical evaluation much easier and more efficient.
In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that = (). The family of all functions that satisfy this property can be denoted