Search results
Results from the WOW.Com Content Network
Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path (a trajectory) under the action of gravity only.
Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion, quantitative change, qualitative change, and substantial change.
In projectile motion the most important force applied to the ‘projectile’ is the propelling force, in this case the propelling forces are the muscles that act upon the ball to make it move, and the stronger the force applied, the more propelling force, which means the projectile (the ball) will travel farther. See pitching, bowling.
Hydrostatic shock, also known as hydro-shock, is the controversial concept that a penetrating projectile (such as a bullet) can produce a pressure wave that causes "remote neural damage", "subtle damage in neural tissues" and "rapid effects" in living targets.
Internal ballistics (also interior ballistics), a subfield of ballistics, is the study of the propulsion of a projectile.. In guns, internal ballistics covers the time from the propellant's ignition until the projectile exits the gun barrel. [1]
In a general physics context, sectional density is defined as: = [2] SD is the sectional density; M is the mass of the projectile; A is the cross-sectional area; The SI derived unit for sectional density is kilograms per square meter (kg/m 2). The general formula with units then becomes:
A projectile is any object projected into space (empty or not) by the exertion of a force. Although any object in motion through space (for example a thrown baseball) is a projectile, the term most commonly refers to a weapon. [8] [9] Mathematical equations of motion are used to analyze projectile trajectory. [citation needed]
In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field , and no air resistance . The horizontal ranges of a projectile are equal for two complementary angles of projection with the same velocity.