Ad
related to: temperature control loop diagram
Search results
Results from the WOW.Com Content Network
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal control. The block diagram on the right shows the principles of how these terms are generated and applied.
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
For example, a reactor which operates more efficiently at higher temperatures may be rated to withstand 500°C. However, for safety reasons, the set point for the reactor temperature control loop would be well below this limit, even if this means the reactor is running less efficiently.
In complex processes the loops are interactive, so that the operation of one loop may affect the operation of another. The system diagram for representing control loops is a Piping and instrumentation diagram. Commonly used control systems include programmable logic controller (PLC), Distributed Control System (DCS) or SCADA.
Heat Transportation - The Pump Module (PM) provides flow and accumulator functions and maintains proper temperature control at the pump outlet for each Loop. The PM consists of a single pump, a fixed charge accumulator, a Pump & Control Valve Package (PCVP) containing a firmware controller, startup heaters, isolation valves , and various ...
Correct operation of the petrochemical process plant is achieved through the action of control loops. [1] These automatically maintain and control the pressure, temperature, liquid level and flowrate of fluid in vessels and piping. Control loops compare the measured value of a parameter on the plant, eg. pressure, with a pre-determined set point.
Ad
related to: temperature control loop diagram