Search results
Results from the WOW.Com Content Network
The standard atmosphere was originally defined as the pressure exerted by a 760 mm column of mercury at 0 °C (32 °F) and standard gravity (g n = 9.806 65 m/s 2). [2] It was used as a reference condition for physical and chemical properties, and the definition of the centigrade temperature scale set 100 °C as the boiling point of water at this pressure.
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth.The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, [1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. [2]
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and ...
The average molecular weight of dry air, which can be used to calculate densities or to convert between mole fraction and mass fraction, is about 28.946 [11] or 28.964 [12] [5] g/mol. This is decreased when the air is humid. The relative concentration of gases remains constant until about 10,000 m (33,000 ft). [13]
The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3. Values of ρ b of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = h b+1. [2]
The International Civil Aviation Organization (ICAO) published their "ICAO Standard Atmosphere" as Doc 7488-CD in 1993. It has the same model as the ISA, but extends the altitude coverage to 80 kilometers (262,500 feet). [7] The ICAO Standard Atmosphere, like the ISA, does not contain water vapor. Some of the values defined by ICAO are:
The pressure of seawater at a depth of 33 feet equals one atmosphere. The absolute pressure at 33 feet depth in sea water is the sum of atmospheric and hydrostatic pressure for that depth, and is 66 fsw, or two atmospheres absolute. For every additional 33 feet of depth, another atmosphere of pressure accumulates. [6]
The ambient pressure in water with a free surface is a combination of the hydrostatic pressure due to the weight of the water column and the atmospheric pressure on the free surface. This increases approximately linearly with depth. Since water is much denser than air, much greater changes in ambient pressure can be experienced under water.