enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double exponential function - Wikipedia

    en.wikipedia.org/wiki/Double_exponential_function

    Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(x)).

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Just as triangular numbers sum the numbers from to , and factorials take their product, the exponential factorial exponentiates. The exponential factorial is defined recursively as =, =. For example, the exponential factorial of 4 is = These numbers grow much more quickly than regular factorials. [95] Falling factorial

  4. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  5. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    An alternative notation for the rising factorial () is the less common () +. When () + is used to denote the rising factorial, the notation () is typically used for the ordinary falling factorial, to avoid confusion. [3]

  6. Exponential factorial - Wikipedia

    en.wikipedia.org/wiki/Exponential_factorial

    The exponential factorials grow much more quickly than regular factorials or even hyperfactorials. The number of digits in the exponential factorial of 6 is approximately 5 × 10 183 230. The sum of the reciprocals of the exponential factorials from 1 onwards is the following transcendental number:

  7. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Growth rates may also be faster than exponential. In the most extreme case, when growth increases without bound in finite time, it is called hyperbolic growth . In between exponential and hyperbolic growth lie more classes of growth behavior, like the hyperoperations beginning at tetration , and A ( n , n ) {\displaystyle A(n,n)} , the diagonal ...

  8. Jordan–Pólya number - Wikipedia

    en.wikipedia.org/wiki/Jordan–Pólya_number

    These numbers grow more quickly than polynomials but more slowly than exponentials. As well as in the symmetries of trees, they arise as the numbers of transitive orientations of comparability graphs [ 3 ] and in the problem of finding factorials that can be represented as products of smaller factorials.

  9. Superfactorial - Wikipedia

    en.wikipedia.org/wiki/Superfactorial

    Just as the factorials can be continuously interpolated by the gamma function, the superfactorials can be continuously interpolated by the Barnes G-function. [ 2 ] According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when p {\displaystyle p} is an odd prime number s f ( p − 1 ) ≡ ( p − 1 ) ! !