Search results
Results from the WOW.Com Content Network
Sensitivity analysis studies the relationship between the output of a model and its input variables or assumptions. Historically, the need for a role of sensitivity analysis in modelling, and many applications of sensitivity analysis have originated from environmental science and ecology .
There exist many software tools that can automate sensitivity analysis to various degrees. Here is a non-exhaustive list. Most of these tools have multiple options, including one-at-a-time sensitivity analysis, multidimensional discrete parametric, continuous low-discrepancy distributions, and pareto-front optimization (listed alphabetically):
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs. [1] [2] This involves estimating sensitivity indices that quantify the influence of an input or group of inputs on the output.
PDF is used for representing two-dimensional documents in a manner independent of the application software, hardware, and operating system. Each PDF file encapsulates a complete description of a fixed-layout 2D document that includes the text, fonts, images, and 2D vector graphics which compose the documents.
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [ 1 ] [ 2 ] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
[1] [2] In biomedical engineering, sensitivity analysis can be used to determine system dynamics in ODE-based kinetic models. Parameters corresponding to stages of differentiation can be varied to determine which parameter is most influential on cell fate.
A sensitivity analysis may reveal surprising insights in multi-criteria decision making (MCDM) studies aimed to select the best alternative among a number of competing alternatives. This is an important task in decision making. In such a setting each alternative is described in terms of a set of evaluative criteria.