enow.com Web Search

  1. Ad

    related to: relation between concentration terms and rates examples pdf worksheet
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  3. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  4. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.

  5. Graham's law - Wikipedia

    en.wikipedia.org/wiki/Graham's_law

    Rate 1 is the rate of effusion for the first gas. (volume or number of moles per unit time). Rate 2 is the rate of effusion for the second gas. M 1 is the molar mass of gas 1 M 2 is the molar mass of gas 2. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight.

  6. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  7. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  8. Thiele modulus - Wikipedia

    en.wikipedia.org/wiki/Thiele_modulus

    The Thiele modulus was developed by Ernest Thiele in his paper 'Relation between catalytic activity and size of particle' in 1939. [1] Thiele reasoned that a large enough particle has a reaction rate so rapid that diffusion forces can only carry the product away from the surface of the catalyst particle. Therefore, only the surface of the ...

  9. Langmuir adsorption model - Wikipedia

    en.wikipedia.org/wiki/Langmuir_adsorption_model

    However, the equilibrium constant will no longer be dimensionless and will have units of reciprocal concentration instead. The difference between the kinetic and thermodynamic derivations of the Langmuir model is that the thermodynamic uses activities as a starting point while the kinetic derivation uses rates of reaction.

  1. Ad

    related to: relation between concentration terms and rates examples pdf worksheet