Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is , , , , , … where r is the common ratio and a is the initial value. The sum of a geometric progression's terms is ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series with first term 1 / 4 and common ratio 1 / 4 , its ...
The first six triangular numbers. The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.
The red figure is the Minkowski sum of blue and green figures. In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B: