Search results
Results from the WOW.Com Content Network
The Monge gauge has two obvious limitations: If the average surface is not plane, then the Monge gauge only makes sense on length scales smaller than the curvature of the average surface. And the Monge gauge fails completely if the surface is so strongly bent that there are overhangs (points x,y corresponding to more than one z).
Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
The Monge cone at a given point (x 0, ..., x n) is the zero locus of the equation in the tangent space at the point. The Monge equation is unrelated to the (second-order) Monge–Ampère equation . References
For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),
A point p in a Riemannian submanifold is umbilical if, at p, the (vector-valued) Second fundamental form is some normal vector tensor the induced metric (First fundamental form). Equivalently, for all vectors U , V at p , II( U , V ) = g p ( U , V ) ν {\displaystyle \nu } , where ν {\displaystyle \nu } is the mean curvature vector at p .
where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated. Mean Curvature may ...
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...