enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  3. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  4. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    The essential idea behind trial division tests to see if an integer n, the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n. For example, to find the prime factors of n = 70 , one can try to divide 70 by successive primes: first, 70 / 2 = 35 ; next, neither 2 nor 3 evenly divides ...

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In other words, the square of a number is the square of its difference from 100 added to the product of one hundred and the difference of one hundred and the product of two and the difference of one hundred and the number. For example, to square 93: 100(100 − 2(7)) + 7 2 = 100 × 86 + 49 = 8,600 + 49 = 8,649

  6. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    One iteration of the middle-square method, showing a 6-digit seed, which is then squared, and the resulting value has its middle 6 digits as the output value (and also as the next seed for the sequence). Directed graph of all 100 2-digit pseudorandom numbers obtained using the middle-square method with n = 2.

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  8. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    If the divisor has a fractional part, one can restate the problem by moving the decimal to the right in both numbers until the divisor has no fraction, which can make the problem easier to solve (e.g., 10/2.5 = 100/25 = 4). Division can be calculated with an abacus. [14]

  9. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...