Search results
Results from the WOW.Com Content Network
The ISQ symbols for the bit and byte are bit and B, respectively.In the context of data-rate units, one byte consists of 8 bits, and is synonymous with the unit octet.The abbreviation bps is often used to mean bit/s, so that when a 1 Mbps connection is advertised, it usually means that the maximum achievable bandwidth is 1 Mbit/s (one million bits per second), which is 0.125 MB/s (megabyte per ...
The bit rate for this example is 64 Gbit/s (8 × 8 × 10 9 bit/s). The formula for a data transfer rate is: Channel width (bits/transfer) × transfers/second = bits/second . Expanding the width of a channel, for example that between a CPU and a northbridge , increases data throughput without requiring an increase in the channel's operating ...
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. [1]The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). [2]
In actuality, a 64 kilobyte file is 64 × 1,024 × 8 bits in size and the 64 k circuit will transmit bits at a rate of 64 × 1,000 bit/s, so the amount of time taken to transmit a 64 kilobyte file over the 64 k circuit will be at least (64 × 1,024 × 8)/(64 × 1,000) seconds, which works out to be 8.192 seconds.
The packet transmission time in seconds can be obtained from the packet size in bit and the bit rate in bit/s as: Packet transmission time = Packet size / Bit rate. Example: Assuming 100 Mbit/s Ethernet, and the maximum packet size of 1526 bytes, results in Maximum packet transmission time = 1526×8 bit / (100 × 10 6 bit/s) ≈ 122 μs
The two coincide in fact in NRZ transmission; they do not coincide in a 2B1Q transmission, where one pulse takes the time of two bits. For example, in a serial line with a baud rate of 2.5 Gbit/s, a unit interval is 1/(2.5 Gbit/s) = 0.4 ns/baud.
In data communications, the bandwidth-delay product is the product of a data link's capacity (in bits per second) and its round-trip delay time (in seconds). [1] The result, an amount of data measured in bits (or bytes), is equivalent to the maximum amount of data on the network circuit at any given time, i.e., data that has been transmitted but not yet acknowledged.
4.0×10 10 bit/s Networking 40 Gigabit Ethernet: 4.0×10 10 bit/s Computer data interfaces PCI Express 1.0 ×16 (interface signaling rate) 8.0×10 10 bit/s Computer data interfaces PCI Express 2.0 ×16 (interface signaling rate) 9.6×10 10 bit/s Computer data interfaces InfiniBand 12X QDR: 10 11: 1.0×10 11 bit/s Networking 100 Gigabit Ethernet ...