Search results
Results from the WOW.Com Content Network
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring , discrete logarithm , graph isomorphism , and the shortest vector problem .
Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,
The discrete logarithm algorithm and the factoring algorithm are instances of the period-finding algorithm, and all three are instances of the hidden subgroup problem. On a quantum computer, to factor an integer N {\displaystyle N} , Shor's algorithm runs in polynomial time , meaning the time taken is polynomial in log N {\displaystyle \log ...
The subgroup method is an algorithm used in the mathematical field of group theory. It is used to find the word of an element. It doesn't always return the minimal word, but it can return optimal words based on the series of subgroups that is used. The code looks like this:
Visualization of Simpson's paradox on data resembling real-world variability indicates that risk of misjudgment of true causal relationship can be hard to spot. Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined.
For example, consider the infinite cyclic group ℤ = b , embedded as a normal subgroup of the Baumslag–Solitar group BS(1, 2) = a, b . With respect to the chosen generating sets, the element b 2 n = a n b a − n {\displaystyle b^{2^{n}}=a^{n}ba^{-n}} is distance 2 n from the origin in ℤ , but distance 2 n + 1 from the origin in BS(1, 2) .
An important example in the theory of Lie groups arises when is taken to be (;), the group of invertible matrices with complex entries. In that case, a basic result is the following: [ 5 ] Theorem : Suppose φ : R → G L ( n ; C ) {\displaystyle \varphi :\mathbb {R} \rightarrow \mathrm {GL} (n;\mathbb {C} )} is a one-parameter group.
For example, any subgroup of the group of integers (, +) is generated by some integer . If = then the subgroup takes up 0 proportion. Otherwise, it takes up / of the whole group. Even though both the group and the subgroup has infinitely many elements, there is a well-defined sense of proportion.