enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    The Christoffel symbol depends only on the metric tensor, or rather on how it changes with position. The variable q {\textstyle q} is a constant multiple of the proper time τ {\textstyle \tau } for timelike orbits (which are traveled by massive particles), and is usually taken to be equal to it.

  3. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Christoffel symbols being calculated from the metric tensor, the equations can be derived and expressed from the principle of least action. When applying the Euler-Lagrange equation to a system of equations, the Lagrangian will include terms involving the Christoffel symbols, allowing the equation to act for the curvature which can determine ...

  4. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...

  5. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :

  6. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates by the formula = (+) = (, +,,) (where commas indicate partial derivatives). The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇.

  7. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols. The Christoffel symbols are functions of the metric and are given by: Γ b c a = 1 2 g a d ( g c d , b + g b d , c − g b c , d ) {\displaystyle \Gamma _{bc}^{a}={\frac {1}{2}}g^{ad}\left(g_{cd,b}+g_{bd,c}-g_{bc,d}\right)}

  8. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  9. Spin connection - Wikipedia

    en.wikipedia.org/wiki/Spin_connection

    The torsion-free spin connection is given by = + = , where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection , which is the unique metric compatible, torsion-free connection on a Riemannian Manifold.