Search results
Results from the WOW.Com Content Network
The Christoffel symbol depends only on the metric tensor, or rather on how it changes with position. The variable q {\textstyle q} is a constant multiple of the proper time τ {\textstyle \tau } for timelike orbits (which are traveled by massive particles), and is usually taken to be equal to it.
Christoffel symbols being calculated from the metric tensor, the equations can be derived and expressed from the principle of least action. When applying the Euler-Lagrange equation to a system of equations, the Lagrangian will include terms involving the Christoffel symbols, allowing the equation to act for the curvature which can determine ...
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :
The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates by the formula = (+) = (, +,,) (where commas indicate partial derivatives). The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇.
where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols. The Christoffel symbols are functions of the metric and are given by: Γ b c a = 1 2 g a d ( g c d , b + g b d , c − g b c , d ) {\displaystyle \Gamma _{bc}^{a}={\frac {1}{2}}g^{ad}\left(g_{cd,b}+g_{bd,c}-g_{bc,d}\right)}
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The torsion-free spin connection is given by = + = , where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection , which is the unique metric compatible, torsion-free connection on a Riemannian Manifold.