enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The positive integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    Since the root of unity is a root of the polynomial x n − 1, it is algebraic. Since the trigonometric number is the average of the root of unity and its complex conjugate, and algebraic numbers are closed under arithmetic operations, every trigonometric number is algebraic. [2]

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    When p = ±3, the above values of t 0 are sometimes called the Chebyshev cube root. [29] More precisely, the values involving cosines and hyperbolic cosines define, when p = −3, the same analytic function denoted C 1/3 (q), which is the proper Chebyshev cube root. The value involving hyperbolic sines is similarly denoted S 1/3 (q), when p = 3.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The mean value theorem ensures that if there is a root of f in X k, then it is also in X k + 1. Moreover, the hypothesis on F′ ensures that X k + 1 is at most half the size of X k when m is the midpoint of Y , so this sequence converges towards [ x* , x* ] , where x* is the root of f in X .

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    [1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions.

  8. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Complex numbers thus form an algebraically closed field, where any polynomial equation has a root. Many mathematicians contributed to the development of complex numbers. The rules for addition, subtraction, multiplication, and root extraction of complex numbers were developed by the Italian mathematician Rafael Bombelli. [24]

  9. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.