Search results
Results from the WOW.Com Content Network
The Sommerfeld model predicted that the magnetic moment of an atom measured along an axis will only take on discrete values, a result which seems to contradict rotational invariance but which was confirmed by the Stern–Gerlach experiment. This was a significant step in the development of quantum mechanics.
The Independent Atom Model (abbreviated to IAM), upon which the Multipole Model is based, is a method of charge density modelling. It relies on an assumption that electron distribution around the atom is isotropic, and that therefore charge density is dependent only on the distance from a nucleus.
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete. A problem in classical mechanics is that an accelerating charged particle radiates electromagnetic radiation, causing the particle to lose kinetic energy.
Slater-type orbitals (STOs) or Slater-type functions (STFs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater , who introduced them in 1930.
An example provided in Slater's original paper is for the iron atom which has nuclear charge 26 and electronic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2.The screening constant, and subsequently the shielded (or effective) nuclear charge for each electron is deduced as: [1]
The Rutherford model is a name for the first model of an atom with a compact nucleus. The concept arose from Ernest Rutherford discovery of the nucleus. Rutherford directed the Geiger–Marsden experiment in 1909, which showed much more alpha particle recoil than J. J. Thomson's plum pudding model of the atom could explain. Thomson's model had ...
In the atom-centered regions, the wave functions can be expanded in terms of spherical harmonics and the eigenfunctions of a radial Schrödinger equation. [ 2 ] [ 10 ] Such use of functions other than plane waves as basis functions is termed the augmented plane-wave approach (of which there are many variations).
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.