Search results
Results from the WOW.Com Content Network
The free monoid on a set A is usually denoted A ∗. The free semigroup on A is the subsemigroup of A ∗ containing all elements except the empty string. It is usually denoted A +. [1] [2] More generally, an abstract monoid (or semigroup) S is described as free if it is isomorphic to the free monoid (or semigroup) on some set. [3]
Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
In mathematics and computer science, trace theory aims to provide a concrete mathematical underpinning for the study of concurrent computation and process calculi.The underpinning is provided by an algebraic definition of the free partially commutative monoid or trace monoid, or equivalently, the history monoid, which provides a concrete algebraic foundation, analogous to the way that the free ...
The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory . As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).
For example, the alphabet {a, b} with the rules { ab → ε, ba → ε }, where ε is the empty string, is a presentation of the free group on one generator. If instead the rules are just { ab → ε }, then we obtain a presentation of the bicyclic monoid. The importance of semi-Thue systems as presentation of monoids is made stronger by the ...
The best free movie services offer a wide variety of films and plenty of ways to watch them. Check out these top picks for alternatives to paid streaming services.
In abstract algebra, a branch of mathematics, an affine monoid is a commutative monoid that is finitely generated, and is isomorphic to a submonoid of a free abelian group,. [1] Affine monoids are closely connected to convex polyhedra , and their associated algebras are of much use in the algebraic study of these geometric objects.