Search results
Results from the WOW.Com Content Network
The maximum sustainable yield (MSY) is the largest amount of biomass that can be collected annually for indefinite periods. MSY assesses the productive capacity of the fishery, rather than demand or economic costs. MSY output may be greater or less than monopolistic or competitive output.
The maximum sustainable yield is the largest yield that can be taken from a population at equilibrium. In figure 3, if H {\displaystyle H} is higher than H 2 {\displaystyle H_{2}} , the harvesting would exceed the population's capacity to replace itself at any population size ( H 3 {\displaystyle H_{3}} in figure 3).
In population ecology and economics, the maximum sustainable yield or MSY is, theoretically, the largest catch that can be taken from a fishery stock over an indefinite period. [ 8 ] [ 9 ] Under the assumption of logistic growth, the MSY will be exactly at half the carrying capacity of a species, as this is the stage at when population growth ...
The uploader or another editor requests that a local copy of this file be kept. This image or media file may be available on the Wikimedia Commons as File:Python 3.3.2 reference document.pdf, where categories and captions may be viewed. While the license of this file may be compliant with the Wikimedia Commons, an editor has requested that the ...
The concept of maximum sustainable yield (MSY) has been used in fisheries science and fisheries management for more than a century. Originally developed and popularized by Fedor Baranov early in the 1900s as the "theory of fishing," it is often credited with laying the foundation for the modern understanding of the population dynamics of fisheries. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Beverton–Holt model is a classic discrete-time population model which gives the expected number n t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, + = + /.
The maximal information coefficient uses binning as a means to apply mutual information on continuous random variables. Binning has been used for some time as a way of applying mutual information to continuous distributions; what MIC contributes in addition is a methodology for selecting the number of bins and picking a maximum over many possible grids.