enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hadamard factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Hadamard_factorization_theorem

    Define the Hadamard canonical factors ():= = / Entire functions of finite order have Hadamard's canonical representation: [1] = = (/) where are those roots of that are not zero (), is the order of the zero of at = (the case = being taken to mean ()), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series = | | + converges.

  3. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  5. Entire function - Wikipedia

    en.wikipedia.org/wiki/Entire_function

    Such functions are sometimes called self-conjugate (the conjugate function, (), being given by ¯ (¯)). [ 1 ] If the real part of an entire function is known in a neighborhood of a point then both the real and imaginary parts are known for the whole complex plane, up to an imaginary constant.

  6. In-phase and quadrature components - Wikipedia

    en.wikipedia.org/wiki/In-phase_and_quadrature...

    And in functional analysis, when x is a linear function of some variable, such as time, these components are sinusoids, and they are orthogonal functions. A phase-shift of x → x + π /2 changes the identity to: cos(x + φ) = cos(x) cos(φ) + cos(x + π /2) sin(φ), in which case cos(x) cos(φ) is the in-phase component.

  7. Trigonometric interpolation - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_interpolation

    Under the above conditions, there exists a solution to the problem for any given set of data points {x k, y k} as long as N, the number of data points, is not larger than the number of coefficients in the polynomial, i.e., N ≤ 2K+1 (a solution may or may not exist if N>2K+1 depending upon the particular set of data points).

  8. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    That cos nx is an n th-degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula: ⁡ + ⁡ = (⁡ + ⁡). The real part of the other side is a polynomial in cos x and sin x , in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1 .

  9. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.