enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Each residue class is an arithmetic progression, and thus clopen. Consider the multiples of each prime. These multiples are a residue class (so closed), and the union of these sets is all (Golomb: positive) integers except the units ±1. If there are finitely many primes, that union is a closed set, and so its complement ({±1}) is open.

  4. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]

  5. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Download as PDF; Printable version; ... Dirichlet's theorem on arithmetic progressions (number theory) ... Vieta's formulas ; Commutative algebra

  7. Linnik's theorem - Wikipedia

    en.wikipedia.org/wiki/Linnik's_theorem

    It follows from Zsigmondy's theorem that p(1,d) ≤ 2 d − 1, for all d ≥ 3. It is known that p(1,p) ≤ L p, for all primes p ≥ 5, as L p is congruent to 1 modulo p for all prime numbers p, where L p denotes the p-th Lucas number. Just like Mersenne numbers, Lucas numbers with prime indices have divisors of the form 2kp+1.

  8. Green–Tao theorem - Wikipedia

    en.wikipedia.org/wiki/Green–Tao_theorem

    In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k {\displaystyle k} , there exist arithmetic progressions of primes with k {\displaystyle k} terms.

  9. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...