Search results
Results from the WOW.Com Content Network
Generated in gnuplot with the following script: set terminal svg size 1000 1000 fixed enhanced fname 'Times' fsize 36 set output "X_cubed_plot.svg" set samples 5000 set xrange [-4:4] set yrange [-12:12] set grid set xzeroaxis linewidth 2 set yzeroaxis linewidth 2 set key left unset border plot x**3 lw 4
The following other wikis use this file: Usage on de.wikipedia.org Sattelpunkt; Usage on de.wikibooks.org Mathematrix: Aufgabensammlung/ Kurvendiskussion
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
Firstly, if a < 0, the change of variable x → –x allows supposing a > 0. After this change of variable, the new graph is the mirror image of the previous one, with respect of the y-axis. Then, the change of variable x = x 1 – b / 3a provides a function of the form = + +. This corresponds to a translation parallel to the x-axis.
The web graph W 4,2 is a cube. The web graph W n,r is a graph consisting of r concentric copies of the cycle graph C n, with corresponding vertices connected by "spokes". Thus W n,1 is the same graph as C n, and W n,2 is a prism. A web graph has also been defined as a prism graph Y n+1, 3, with the edges of the outer cycle removed. [7] [10]
Ball-and-stick models of the graphs in another column of the table show the vertices and edges in the style of images of molecular bonds. Comments on the individual pictures contain girth, diameter, Wiener index, Estrada index and Kirchhoff index. Aut is the order of the Automorphism group of the graph.
cubic graph special points: Image title: Graph showing the relationship between the roots, turning or stationary points and inflection point of a cubic polynomial and its first and second derivatives by CMG Lee. The vertical scale is compressed 1:50 relative to the horizontal scale for ease of viewing.
Regular graphs of degree at most 2 are easy to classify: a 0-regular graph consists of disconnected vertices, a 1-regular graph consists of disconnected edges, and a 2-regular graph consists of a disjoint union of cycles and infinite chains. A 3-regular graph is known as a cubic graph.