Search results
Results from the WOW.Com Content Network
Larger defects in an ordered structure are usually considered dislocation loops. For historical reasons, many point defects, especially in ionic crystals, are called centers: for example a vacancy in many ionic solids is called a luminescence center, a color center, or F-center. These dislocations permit ionic transport through crystals leading ...
F-center in an NaCl crystal. An F-center or color center or Farbe center (from the original German Farbzentrum, where Farbe means color and zentrum means center) is a type of crystallographic defect in which an anionic vacancy in a crystal lattice is occupied by one or more unpaired electrons.
Crystals inherently possess imperfections, sometimes referred to as crystallographic defects. Vacancies occur naturally in all crystalline materials. At any given temperature, up to the melting point of the material, there is an equilibrium concentration (ratio of vacant lattice sites to those containing atoms). [ 2 ]
In geology and materials science, a deformation mechanism is a process occurring at a microscopic scale that is responsible for deformation: changes in a material's internal structure, shape and volume. [1] [2] The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure.
In addition, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects. Most materials do not occur as a single crystal, but are poly-crystalline in nature (they exist as an aggregate of small crystals with different orientations).
A Schottky defect is an excitation of the site occupations in a crystal lattice leading to point defects named after Walter H. Schottky. In ionic crystals , this defect forms when oppositely charged ions leave their lattice sites and become incorporated for instance at the surface, creating oppositely charged vacancies .
where N particle is the number of particles in the unit cell, V particle is the volume of each particle, and V unit cell is the volume occupied by the unit cell. It can be proven mathematically that for one-component structures, the most dense arrangement of atoms has an APF of about 0.74 (see Kepler conjecture ), obtained by the close-packed ...
The existence of a topological defect can be demonstrated whenever the boundary conditions entail the existence of homotopically distinct solutions. Typically, this occurs because the boundary on which the conditions are specified has a non-trivial homotopy group which is preserved in differential equations; the solutions to the differential equations are then topologically distinct, and are ...