Search results
Results from the WOW.Com Content Network
This page was last edited on 6 December 2011, at 12:57 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
In C++, the Standard Template Library (STL) provides the set template class, which is typically implemented using a binary search tree (e.g. red–black tree); SGI's STL also provides the hash_set template class, which implements a set using a hash table. C++11 has support for the unordered_set template class, which is implemented using a hash ...
similar to a set, multiset, map, or multimap, respectively, but implemented using a hash table; keys are not ordered, but a hash function must exist for the key type. These types were left out of the C++ standard; similar containers were standardized in C++11, but with different names (unordered_set and unordered_map). Other types of containers ...
It continues doing this for each pair of adjacent elements to the end of the data set. It then starts again with the first two elements, repeating until no swaps have occurred on the last pass. [34] This algorithm's average time and worst-case performance is O(n 2), so it is rarely used to sort large, unordered data sets. Bubble sort can be ...
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: set, map, multiset, multimap. Each of these containers differ only on constraints placed on their elements.
Templates are a feature of the C++ programming language that allows functions and classes to operate with generic types.This allows a function or class declaration to reference via a generic variable another different class (built-in or newly declared data type) without creating full declaration for each of these different classes.