enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Following the terminology in much of the strongly regular graph literature, the larger eigenvalue is called r with multiplicity f and the smaller one is called s with multiplicity g. Since the sum of all the eigenvalues is the trace of the adjacency matrix , which is zero in this case, the respective multiplicities f and g can be calculated:

  3. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The resultant R(x,t) of P and Q with respect to y is a homogeneous polynomial in x and t that has the following property: (,) = with (,) (,) if and only if it exist such that (,,) is a common zero of P and Q (see Resultant § Zeros).

  4. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    Graph of x 3 + 2x 2 − 7x + 4 with a simple root (multiplicity 1) at x=−4 and a root of multiplicity 2 at x=1. The graph crosses the x axis at the simple root. It is tangent to the x axis at the multiple root and does not cross it, since the multiplicity is even. The graph of a polynomial function f touches the x-axis at the real roots of ...

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  6. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ ( x ) = x + 1/ x , which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits

  7. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix. This nullity equals the multiplicity of the eigenvalue 0 in the spectrum of the adjacency matrix. See ...

  8. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    Let X be the subvariety of the four-dimensional affine plane, with coordinates x,y,z,w, generated by y 2-x 3 and x 4 +xz 2-w 3. The canonical desingularization of the ideal with these generators would blow up the center C 0 given by x=y=z=w=0. The transform of the ideal in the x-chart if generated by x-y 2 and y 2 (y 2 +z 2-w 3).

  9. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    One can define the adjacency matrix of a directed graph either such that a non-zero element A ij indicates an edge from i to j or; it indicates an edge from j to i. The former definition is commonly used in graph theory and social network analysis (e.g., sociology, political science, economics, psychology). [5]