enow.com Web Search

  1. Ad

    related to: separation of variables examples problems based on probability

Search results

  1. Results from the WOW.Com Content Network
  2. Separation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Separation_(statistics)

    In statistics, separation is a phenomenon associated with models for dichotomous or categorical outcomes, including logistic and probit regression.Separation occurs if the predictor (or a linear combination of some subset of the predictors) is associated with only one outcome value when the predictor range is split at a certain value.

  3. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...

  4. Filtering problem (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Filtering_problem...

    The filtering problem is the following: given observations Z s for 0 ≤ s ≤ t, what is the best estimate Ŷ t of the true state Y t of the system based on those observations? By "based on those observations" it is meant that Ŷ t is measurable with respect to the σ -algebra G t generated by the observations Z s , 0 ≤ s ≤ t .

  5. Separable partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Separable_partial...

    Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...

  6. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    The conditional probability distributions of each variable given its parents in G are assessed. In many cases, in particular in the case where the variables are discrete, if the joint distribution of X is the product of these conditional distributions, then X is a Bayesian network with respect to G. [21]

  7. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  8. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED.

  9. Separation principle in stochastic control - Wikipedia

    en.wikipedia.org/wiki/Separation_principle_in...

    In Georgiou and Lindquist [1] a new framework for the separation principle was proposed. This approach considers stochastic systems as well-defined maps between sample paths rather than between stochastic processes and allows us to extend the separation principle to systems driven by martingales with possible jumps.

  1. Ad

    related to: separation of variables examples problems based on probability