Search results
Results from the WOW.Com Content Network
Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).
Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse. A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. [1]
This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space ′ of tempered distributions.
In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.
The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statistics as well as in the study of physical phenomena exhibiting normal distribution (e.g., diffusion). The Fourier transform of a Gaussian function is another Gaussian function.
In signal processing terms, this is at most −3 dB of attenuation, called half-power point or, more specifically, half-power bandwidth. When half-power point is applied to antenna beam width, it is called half-power beam width.
When processing temporal signals, data from the future cannot be accessed, which leads to problems if attempting to use Gabor functions for processing real-time signals. A time-causal analogue of the Gabor filter has been developed in [ 2 ] based on replacing the Gaussian kernel in the Gabor function with a time-causal and time-recursive kernel ...