enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.

  3. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).

  4. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.

  5. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    Their numbers can be arranged into a triangle, the triangle of partition numbers, in which the th row gives the partition numbers (), (), …, (): [1] k n

  6. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .

  7. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is the number of sets in the partition. [8] Spivey 2008 has given a formula that combines both of these summations:

  8. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    The numbers within the triangle count partitions in which a given element is the largest singleton. The number of partitions of an n-element set into exactly k (non-empty) parts is the Stirling number of the second kind S(n, k). The number of noncrossing partitions of an n-element set is the Catalan number

  9. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    [1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T . The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T .