Search results
Results from the WOW.Com Content Network
The free monoid on a set A is usually denoted A ∗. The free semigroup on A is the subsemigroup of A ∗ containing all elements except the empty string. It is usually denoted A +. [1] [2] More generally, an abstract monoid (or semigroup) S is described as free if it is isomorphic to the free monoid (or semigroup) on some set. [3]
Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
For every category C, the free strict monoidal category Σ(C) can be constructed as follows: its objects are lists (finite sequences) A 1, ..., A n of objects of C; there are arrows between two objects A 1, ..., A m and B 1, ..., B n only if m = n, and then the arrows are lists (finite sequences) of arrows f 1: A 1 → B 1, ..., f n: A n → B ...
Numerical semigroups are commutative monoids and are also known as numerical monoids. [ 1 ] [ 2 ] The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x 1 n 1 + x 2 n 2 + ... + x r n r for a given set { n 1 , n 2 , ..., n r } of positive integers and for ...
For example, the alphabet {a, b} with the rules { ab → ε, ba → ε }, where ε is the empty string, is a presentation of the free group on one generator. If instead the rules are just { ab → ε }, then we obtain a presentation of the bicyclic monoid. The importance of semi-Thue systems as presentation of monoids is made stronger by the ...
In mathematics and computer science, trace theory aims to provide a concrete mathematical underpinning for the study of concurrent computation and process calculi.The underpinning is provided by an algebraic definition of the free partially commutative monoid or trace monoid, or equivalently, the history monoid, which provides a concrete algebraic foundation, analogous to the way that the free ...