enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.

  4. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    The force is along the straight line joining them. If the two charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive. If is the distance (in meters) between two charges, then the force between two point charges and is: = | |, where ε 0 = 8.854 187 8188 ...

  5. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The force obtained in the case of a current loop model is = (), where the gradient ∇ is the change of the quantity m · B per unit distance, and the direction is that of maximum increase of m · B. To understand this equation, note that the dot product m · B = mB cos( θ ) , where m and B represent the magnitude of the m and B vectors and θ ...

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Coulomb's law for the electric force between two stationary, electrically charged bodies has much the same mathematical form as Newton's law of universal gravitation: the force is proportional to the product of the charges, inversely proportional to the square of the distance between them, and directed along the straight line between them.

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    From the above formula it can be seen that the electric field due to a point charge is everywhere directed away from the charge if it is positive, and toward the charge if it is negative, and its magnitude decreases with the inverse square of the distance from the charge. The Coulomb force on a charge of magnitude at any point in space is equal ...

  8. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ, [1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured ...

  9. Inverse-square law - Wikipedia

    en.wikipedia.org/wiki/Inverse-square_law

    The force of attraction or repulsion between two electrically charged particles, in addition to being directly proportional to the product of the electric charges, is inversely proportional to the square of the distance between them; this is known as Coulomb's law. The deviation of the exponent from 2 is less than one part in 10 15. [8]