Search results
Results from the WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.
The square root of two forms the relationship of f-stops in photographic lenses, which in turn means that the ratio of areas between two successive apertures is 2. The celestial latitude (declination) of the Sun during a planet's astronomical cross-quarter day points equals the tilt of the planet's axis divided by 2 {\displaystyle {\sqrt {2}}} .
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
So the estimated square root of 15 is 3.875. The actual square root of 15 is 3.872983... One thing to note is that, no matter what the original guess was, the estimated answer will always be larger than the actual answer due to the inequality of arithmetic and geometric means. Thus, one should try rounding the estimated answer down.
The traditional pen-and-paper algorithm for computing the square root is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a square . If stopping after the one's place, the result computed will be the integer square root.
Part of the seventh of Hilbert's twenty-three problems posed in 1900 was to prove, or find a counterexample to, the claim that a b is always transcendental for algebraic a ≠ 0, 1 and irrational algebraic b. In the address he gave two explicit examples, one of them being the Gelfond–Schneider constant 2 √ 2.