Search results
Results from the WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.
One side of the square is labeled with the sexagesimal number 30. The diagonal of the square is labeled with two sexagesimal numbers. The first of these two, 1;24,51,10 represents the number 305470/216000 ≈ 1.414213, a numerical approximation of the square root of two that is off by less than one part in two million. The second of the two ...
The square root of two forms the relationship of f-stops in photographic lenses, which in turn means that the ratio of areas between two successive apertures is 2. The celestial latitude (declination) of the Sun during a planet's astronomical cross-quarter day points equals the tilt of the planet's axis divided by 2 {\displaystyle {\sqrt {2}}} .
The traditional pen-and-paper algorithm for computing the square root is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a square . If stopping after the one's place, the result computed will be the integer square root.
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the ...
The left side of this identity describes a square number, while the right side describes a triangular number, so the result is a square triangular number. Falcón and Díaz-Barrero (2006) proved another identity relating Pell numbers to squares and showing that the sum of the Pell numbers up to P 4n +1 is always a square:
In binary arithmetic, division by two can be performed by a bit shift operation that shifts the number one place to the right. This is a form of strength reduction optimization. For example, 1101001 in binary (the decimal number 105), shifted one place to the right, is 110100 (the decimal number 52): the lowest order bit, a 1, is removed.