enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

  3. Bearing (navigation) - Wikipedia

    en.wikipedia.org/wiki/Bearing_(navigation)

    Webpage with program to calculate Distance & Bearing; Calculate distance and bearing between two Latitude/Longitude points and much more; See the end point on a map when you specify a start point, a bearing and a distance. More understandable definitions from an online classroom

  4. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    It approximates the arc length, , to the tunnel distance, , or omits the conversion between arc and chord lengths shown below. The shortest distance between two points in plane is a Cartesian straight line. The Pythagorean theorem is used to calculate the distance between points in a plane.

  5. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  6. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  7. Rhumb line - Wikipedia

    en.wikipedia.org/wiki/Rhumb_line

    Over longer distances and/or at higher latitudes the great circle route is significantly shorter than the rhumb line between the same two points. However the inconvenience of having to continuously change bearings while travelling a great circle route makes rhumb line navigation appealing in certain instances. [1]

  8. Triangulation (surveying) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(surveying)

    In surveying, triangulation is the process of determining the location of a point by measuring only angles to it from known points at either end of a fixed baseline by using trigonometry, rather than measuring distances to the point directly as in trilateration. The point can then be fixed as the third point of a triangle with one known side ...

  9. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    Figure 2. The great circle path between a node (an equator crossing) and an arbitrary point (φ,λ). Finally, calculate the position and azimuth at an arbitrary point, P (see Fig. 2), by the spherical version of the direct geodesic problem. [note 5] Napier's rules give .