enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Horn-satisfiability - Wikipedia

    en.wikipedia.org/wiki/Horn-satisfiability

    A Horn formula is a propositional formula formed by conjunction of Horn clauses. Horn satisfiability is actually one of the "hardest" or "most expressive" problems which is known to be computable in polynomial time, in the sense that it is a P-complete problem. [2] The Horn satisfiability problem can also be asked for propositional many-valued ...

  3. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    The problem of deciding the satisfiability of a given conjunction of Horn clauses is called Horn-satisfiability, or HORN-SAT. It can be solved in polynomial time by a single step of the unit propagation algorithm, which produces the single minimal model of the set of Horn clauses (w.r.t. the set of literals assigned to TRUE).

  4. Horn clause - Wikipedia

    en.wikipedia.org/wiki/Horn_clause

    In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951. [1]

  5. 2-satisfiability - Wikipedia

    en.wikipedia.org/wiki/2-satisfiability

    A formula is renamable Horn when it is possible to put it into Horn form by replacing some variables by their negations. To do so, Lewis sets up a 2-satisfiability instance with one variable for each variable of the renamable Horn instance, where the 2-satisfiability variables indicate whether or not to negate the corresponding renamable Horn ...

  6. Unit propagation - Wikipedia

    en.wikipedia.org/wiki/Unit_propagation

    Unit propagation, applied repeatedly as new unit clauses are generated, is a complete satisfiability algorithm for sets of propositional Horn clauses; it also generates a minimal model for the set if satisfiable: see Horn-satisfiability.

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    This implies that if a formula is a logical consequence of an infinite set of first-order axioms, then it is a logical consequence of some finite number of those axioms. This theorem was proved first by Kurt Gödel as a consequence of the completeness theorem, but many additional proofs have been obtained over time.

  8. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    An important set of problems in computational complexity involves finding assignments to the variables of a Boolean formula expressed in conjunctive normal form, such that the formula is true. The k -SAT problem is the problem of finding a satisfying assignment to a Boolean formula expressed in CNF in which each disjunction contains at most k ...

  9. Descriptive complexity theory - Wikipedia

    en.wikipedia.org/wiki/Descriptive_complexity_theory

    In the presence of a successor function, PTIME can also be characterised by second-order Horn formulae. SO-Horn is the set of Boolean queries definable with SO formulae in disjunctive normal form such that the first-order quantifiers are all universal and the quantifier-free part of the formula is in Horn form, which means that it is a big AND ...