enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of Fluxions - Wikipedia

    en.wikipedia.org/wiki/Method_of_Fluxions

    For a period of time encompassing Newton's working life, the discipline of analysis was a subject of controversy in the mathematical community. Although analytic techniques provided solutions to long-standing problems, including problems of quadrature and the finding of tangents, the proofs of these solutions were not known to be reducible to the synthetic rules of Euclidean geometry.

  3. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    The Newton identities now relate the traces of the powers to the coefficients of the characteristic polynomial of . Using them in reverse to express the elementary symmetric polynomials in terms of the power sums, they can be used to find the characteristic polynomial by computing only the powers A k {\displaystyle \mathbf {A} ^{k}} and their ...

  4. Philosophiæ Naturalis Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Philosophiæ_Naturalis...

    Philosophiæ Naturalis Principia Mathematica (English: The Mathematical Principles of Natural Philosophy) [1] often referred to as simply the Principia (/ p r ɪ n ˈ s ɪ p i ə, p r ɪ n ˈ k ɪ p i ə /), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  6. Isaac Newton - Wikipedia

    en.wikipedia.org/wiki/Isaac_Newton

    Sir Isaac Newton (25 December 1642 – 20 March 1726/27 [a]) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. [5] Newton was a key figure in the Scientific Revolution and the Enlightenment that followed. [6]

  7. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    The most common quasi-Newton algorithms are currently the SR1 formula (for "symmetric rank-one"), the BHHH method, the widespread BFGS method (suggested independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970), and its low-memory extension L-BFGS. The Broyden's class is a linear combination of the DFP and BFGS methods.

  9. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    There, both step direction and length are computed from the gradient as the solution of a linear system of equations, with the coefficient matrix being the exact Hessian matrix (for Newton's method proper) or an estimate thereof (in the quasi-Newton methods, where the observed change in the gradient during the iterations is used to update the ...