enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    A graph of this equation creates an S-shaped curve, which demonstrates how initial population growth is exponential due to the abundance of resources and lack of competition. When factors that limit an organisms growth are not available in constant supply to meet the growing demand, such as RNA and protein amounts in bacteria, the growth of the ...

  3. Growth curve (biology) - Wikipedia

    en.wikipedia.org/wiki/Growth_curve_(biology)

    Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).

  4. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    Not all the cells of the nervous system produce the type of spike that defines the scope of the spiking neuron models. For example, cochlear hair cells, retinal receptor cells, and retinal bipolar cells do not spike. Furthermore, many cells in the nervous system are not classified as neurons but instead are classified as glia.

  5. Summation (neurophysiology) - Wikipedia

    en.wikipedia.org/wiki/Summation_(neurophysiology)

    Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...

  6. FitzHugh–Nagumo model - Wikipedia

    en.wikipedia.org/wiki/FitzHugh–Nagumo_model

    It was named after Richard FitzHugh (1922–2007) [2] who suggested the system in 1961 [3] and Jinichi Nagumo et al. who created the equivalent circuit the following year. [4]In the original papers of FitzHugh, this model was called Bonhoeffer–Van der Pol oscillator (named after Karl-Friedrich Bonhoeffer and Balthasar van der Pol) because it contains the Van der Pol oscillator as a special ...

  7. Excitatory postsynaptic potential - Wikipedia

    en.wikipedia.org/wiki/Excitatory_postsynaptic...

    Quantal size can then be defined as the synaptic response to the release of neurotransmitter from a single vesicle, while quantal content is the number of effective vesicles released in response to a nerve impulse.

  8. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas , they provoke release of insulin . [ a ] Action potentials in neurons are also known as " nerve impulses " or " spikes ", and the temporal sequence of action potentials generated by a neuron is called ...

  9. Rheobase - Wikipedia

    en.wikipedia.org/wiki/Rheobase

    Rheobase in the Weiss formula is the slope of the graph. The x-intercept of the Weiss equation is equal to b x c , or rheobase times chronaxie. This equation suggests that a graph of threshold stimulus strength versus stimulus duration should show a decay toward zero as stimulus duration is increased, so the stimulus strength required to reach ...